FFmpeg Einsteiger Kurs

Reto Kromer, Eléonore Bernard und Kamilla Ødegård AV Preservation by reto.ch und Ødegård & Bernard Restaurierung Bern, 3. Februar 2025

Einführung in den Kursablauf

- Ziele des Kurses
- Einführung in FFmpeg
- Input zu Dateien
- Input zur Kommandozeile
- Vor- und Nachteile von FFmpeg
- Eigenschaften von Dateien
- Praktische Anwendung in Gruppen
- Input zu Ressourcen
- Schlussbesprechung

1

Ziele des Kurses

- Vor- und Nachteile von FFmpeg kennenlernen
- Verstehen, weshalb das Verständnis von Dateien f
 ür die Anwendung von FFmpeg wichtig ist
- Anwendungsmöglichkeiten von FFmpeg in der Erhaltung audiovisueller Dateien kennen lernen
- FFmpeg-Commands kennen lernen, verstehen und anwenden

Einführung in FFmpeg

2

Reto Kromer, Eléonore Bernard und Kamilla Ødegård AV Preservation by reto.ch und Ødegård & Bernard Restaurierung Bern, 3. Januar 2024

Was ist FFmpeg?

"A complete, cross-plattform solution to record, convert and stream audio and video." - www.ffmpeg.org

- Programm welches über die Kommandozeile bedient wird
- FFmpeg ist ein "Framework" welches nahezu alle AV Dateien dekodieren, enkodieren, transcodieren, muxen, demuxen, streamen und abspielen kann.
- FFmpeg kann auf allen gängigen Betriebssystemen angewendet werden
- Mittlerweile gibt es viele Programme, die auf FFmpeg basieren (z. B. VLC, QCTools, vrecord)

Anwendungen von FFmpeg

- Dateiumwandlung
- → Format, Codec verändern
- Dateien verändern
- → Eigenschaften der Dateien verändern
- → Einfügen von Vorspann oder Abspann
- AV-Dateien analysieren und Metadaten extrahieren
- Dateien abspielen

5

FFmpeg-Befehlsstruktur

\$0 \$1 \${n} command argument 1 ... argument n

FFmpeg-Syntax der Argumente:

-parameter -parameter value -p -p value

FFmpeg-Syntax

ffmpeg

[global_options]
[input_options_n] -i input_file_n
[output options n] output file n

ffprobe [input options] input file

ffplay [input_options] input_file

Ressourcen, Hilfestellungen

FFmpeg Cookbook for Archivists → avpres.net/FFmpeg/

ffmprovisr → amiaopensource.github.io/ffmprovisr/

ffmpeg -h ffmpeg -codecs

Die FFmpeg Familie

- Programme
- ffmpeg
- ffplay
- ffprobe

- Bibliotheken
- libavutil

- libavcodec
- libavformat
- libavdevice
- libavfilter
- libswscale
- libswresample
- libpostproc

Kommandozeile

Einführung in FFmpeg Bern, 3. Februar 2025

Was ist die Kommandozeile?

- Benutzerschnittstelle
- → Kommandozeile (CLI: command-line interface)
- → Graphische Benutzeroberfläche (GUI: graphical user interface)
- Wie findet man die Kommandozeile?
- → Linux: "Terminal"
- → Mac OS X: "Terminal"
- → Microsoft Windows: "Eingabeaufforderung" ("cmd")
- Befehle können sich je nach Betriebssystem unterscheiden
- Befehle müssen korrekt eingegeben werden

Wichtige Zeichen zur Eingabe

• Mac OS X (Achtung: kann tastaturabhängig sein)

~ Tilde → Tastenkombination: option + N

 \setminus Backslash \rightarrow Tastenkombination: alt / option + shift + 7

• Windows (Achtung: kann tastaturabhängig sein)

~ Tilde → Tastenkombination: alt + N

 \setminus Backslash \rightarrow Tastenkombination: alt + 9 + 2 / option + shift + 7

Dateien

Einführung in FFmpeg Bern, 3. Februar 2025

Kompression

- nicht komprimiert
- verlustfrei komprimiert
- verlustbehaftet komprimiert
- komprimiert generiert
- Farbunterabtastung

Nicht komprimiert

- + Daten sind leichter zu bearbeiten
- + Software läuft schneller
- grössere Dateien
- langsameres Schreiben, Übermitteln und Lesen der Dateien

Beispiele: TIFF, DPX, DNG, OpenEXR

Verlustfrei komprimiert

- + kleinere Dateien
- + schnelleres Schreiben, Übermitteln und Lesen der Dateien

22

- Daten sind komplexer zu bearbeiten
- Software läuft langsamer

Beispiele: JPEG 2000, FFV1

Verlustbehaftet komprimiert

optimiert f
ür Aufnahme und/oder Postproduktionoptimiert f
ür Zugang und Distribution

Beispiele Mezzanine: ProRes 422, ProRes 4444, DNxHD, DNxHR

Beispiele Zugangsdatei: H.264 (AVC), H.265 (HEVC), H.266 (VVC), AV1

Komprimiert generiert

→ sowohl für Aufnahme als auch für Postproduktion optimiert

Beispiele: CineForm RAW, ProRes RAW, Blackmagic RAW

25

26

Wichtige Grundsätze

Ein Archiv muss seine Dateien pflegen und handhaben können!

- → Open Source Formate und Anwendungen
- → einfache Bedienung und ausführliche Dokumentation
- → weite Verbreitung der Formate

Dateiformate

Formate für verschiedene Anwendungszwecke:

- Archivmasterformat
- → zur Erhaltung und Archivierung
- Mezzanine-Format
- → zur Bearbeitung und Postproduktion
- Distributionsformat
- → zur Verbreitung und Zugänglichmachung

Archivmaster (heute)

Film

folder, TIFF, 2K, RGB, 4:4:4, 16 bit
MXF, DPX, 2K, R'G'B', 4:4:4, 10 bit

Video

- AVI, uncompressed, HD, Y'C_BC_R, 4:2:2, 10 bit
- MOV, uncompressed, HD, $Y^{\prime}C_{B}C_{R},\,4{:}2{:}2,\,10$ bit
- Matroska, FFV1, HD, Y'C_BC_R, 4:2:2, 10 bit

Ton

- BWF, 96 kHz, 24 bit
- FLAC, 96 kHz, 24 bit

29

Mezzanine (heute)

Video

- ProRes 4444, 2K
- DNxHR, 2K
- ProRes 422 HQ, HD
 DNxHD 175x, HD

Ton

• BWF, 48 kHz, 24 bit • WAVE, 48 kHz, 24 bit

30

Zugang (heute)

MP4

- Video • H.264, SD, yuv420p, "lossy"
- H.264, HD, yuv420p, "lossy"

Ton

• AAC, 44.1 kHz, 16 bit • AAC, 48 kHz, 16 bit

Dateiumwandlungen

- Demultiplexen
- Decodieren
- Ändern
- Codieren
- Multiplexen

Vor- und Nachteile von FFmpeg

Einführung in FFmpeg Bern, 3. Februar 2025

Vorteile

- FFmpeg kann mit grosser Dateivielfalt umgehen
- Möglichkeit der Massenverarbeitung → Scripts
- Massgeschneiderte Lösungen → nicht eingeschränkt durch Programmvoreinstellungen
- Vielseitiges und leistungsstarkes Programm
- Bearbeitungsgeschwindigkeit
- Breite Nutzung und etabliertes Programm im Archivbereich
- FFmpeg-Commands können in einigen GUIs implementiert werden

37

Nachteile

- Weniger benutzerfreundlich im Vergleich zu GUI
- Fehlerrisiko bei Unwissen und Tippfehler
- Risiken bei Benutzung der Kommandozeile (CLI)
- Vielseitiges und leistungsstarkes Programm
- → grosse Vielfalt an Commands
- → man muss sich genau mit Commands & Flags auseinandersetzen
- → oder sich auf Quellen wirklich verlassen können!

38

FFmpeg Anwendungsbeispiele

Einführung in FFmpeg Bern, 3. Februar 2025

Erste Anwendungsübungen

- Bilddatei erzeugen
- Bilddatei abspielen
- Tondatei erzeugen
- Tondatei abspielen
- Dateien zusammenführen

Bilddatei erzeugen

ffmpeg

-lavfi mandelbrot
-t 10
-c:v rawvideo
-pix_fmt uyvy422
mandelbrot.avi

Bilddatei abspielen

ffplay mandelbrot.avi

41

42

Tondatei erzeugen

ffmpeg

-f lavfi -i "sine=frequency=440" -t 10 -c:a pcm_s16le -ar 48k -ac 2 la.wav

Tondatei abspielen

ffplay la.wav

Dateien zusammenfügen

ffmpeg

-i mandelbrot.avi -i la.wav -c:v copy -c:a copy mandela.avi

AV-Datei abspielen

ffplay mandela.avi

45

Dateieigenschaften

Einführung in FFmpeg Bern, 3. Februar 2025

Digitaler Ton

- Abtastung
- Quantisierung
- Kompression

Abtastrate

- •44.1 kHz (CD Qualität)
- •48 kHz
- •96 kHz (gut geeignet für Archiv Master)
- •192 kHz

50

Quantisierungsauflösung

- 16 bit (2¹⁶ = 65 536)
- 24 bit (2²⁴ = 16 777 216)
- 32 bit (2³² = 4 294 967 296)

Digitales Bild

- Bildauflösung
- Quantisierungsauflösung
- Linear, Potenzfunktion, logarithmisch
- Farbraum
- Kompression und Farbunterabtastung
- Normlicht

Bildauflösung

- SD 480i / SD 576i
- HD 720p / HD 1080i
- 2K / HD 1080p
- 4K / UHD-1
- 8K / UHD-2

• Wofür stehen p und i?

Interlaced oder progressive

- Interlaced $\rightarrow i$
 - Anwendung bei analoger Monitortechnologie
- Progressive $\rightarrow p$

• Anwendung bei digitaler Monitortechnologie

54

66

Quantisierungsauflösung

- 8 bit (2⁸ = 256)
- 10 bit (2¹⁰ = 1 024)
- 12 bit (2¹² = 4 096)
- 16 bit (2¹⁶ = 65 536)

• 24 bit (2²⁴ = 16 777 216)

Linear, Potenz, Logarithmus

"Mittelgrau"

- Lineare Funktion: etwa 18 %
- Potenzfunktion: 50 %
- Logarithmusfunktion: 50 %

Farbraum

- XYZ, L*a*b*
- RGB / R'G'B' / CMY / C'M'Y'
- Y'IQ / Y'UV / Y'D_BD_R
- $Y'C_BC_R / Y'C_OC_G$

• $Y'P_BP_R$

$$\begin{pmatrix} R'\\G'\\B' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1.396523\\1 & -0.342793 & -0.711348\\1 & 1.765078 & 0 \end{pmatrix} \begin{pmatrix} Y'\\C_B\\C_R \end{pmatrix}$$
$$\begin{pmatrix} Y'\\C_B\\C_R \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114\\-0.168074 & -0.329965 & 0.498039\\0.498039 & -0.417947 & -0.080992 \end{pmatrix} \begin{pmatrix} R'\\G'\\B' \end{pmatrix}$$
$$\begin{pmatrix} Y'\\C_O\\C_G \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4}\\\frac{1}{2} & 0 & -\frac{1}{2}\\-\frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} R'\\G'\\B' \end{pmatrix}$$

74

Farbraum

- XYZ, L*a*b*
- RGB / R'G'B' / CMY / C'M'Y'
- Y'IQ / Y'UV / Y'D_BD_R
- $Y'C_BC_R / Y'C_OC_G$

• $Y'P_BP_R$

Normlicht

- D50
- D55
- D65 • D75

Kompression

- nicht komprimiert
- verlustfrei komprimiert
- verlustbehaftet komprimiert
- komprimiert generiert
- Farbunterabtastung

86

Farbunterabtastung

- 4:4:4
- 4:2:2
- 4:2:0 / 4:1:1

Farbunterabtastung

- 4:4:4
- 4:2:2
- 4:2:0 / 4:1:1

Audio ContainerAudio-CodecAudio-ContainerAudio-Codec

• WAVE • AIFF

• BWF

• XMF

Master: • PCM • FLAC Zugang: • AAC

• MP3

Audiodaten

• pcm_s16le

• pcm_s24le

• pcm_s32le

Video und Bild Container

Video-Container

- MP4
- MOV
- AVI
- MXF
- Matroska (.mkv)
- Flash

• Folder • TAR • ZIP • MXF • Matroska (.mkv)

Einzelbild-Container

Cinema DNGMotion JPEG

Video und Bild Codecs

- Video-Codec Master: • 8 bit uncompressed • 10 bit uncompressed • ProRes RAW
- CineFrom RAW
- HuffYUV
- FFV1

- Video-Codec Mezzanine: • ProRes 422, ProRes 4444, • DNxHD, DNxHR
 - Bild-Codec
 - TIFF
 - DPX
 - JPEG 2000
 - OpenEXR
 - DNG

98

• H.264 (AVC), H.265 (HEVC),

H.266 (VVC),

Zugang:

AV1

- Videodaten
- rgb48le
- rgb24
- rgb72le

bayer_bggr16lebayer_bggr24le

yuv444p16le
yuv422p10le
uyvy422
yuv420p
yuv444p24le

Praktische Anwendung

Einführung in FFmpeg Bern, 3. Februar 2025

FFmpeg-Befehlsstruktur

\$0 \$1 \${n} command argument 1 ... argument n

FFmpeg-Syntax der Argumente:

-parameter -parameter value -p -p value

101

FFmpeg-Syntax

ffmpeg

[global_options]
[input_options_n] -i input_file_n
[output options n] output file n

ffprobe [input_options] input_file

ffplay [input_options] input_file

102

Metadaten extrahieren

ffprobe mandela.avi

Container
 → ffprobe -show format mandela.avi

• Codec

→ ffprobe -show_streams mandela.avi

• Metadaten formatieren

 $\rightarrow \texttt{ffprobe}$ -show_format -show_streams -print_format json mandela.avi

Metadaten speichern

- ffprobe
- -show_format
 -show_streams
 -print_format json
 mandela.avi
 > mandela.txt

Dateiumwandlungen

- Container ändern und vergleichen
- von einer Masterdatei eine Mezzanine-Datei erzeugen
- von einer Masterdatei eine Zugangsdatei erzeugen
- von einer Mezzanine-Datei eine Zugangsdatei erzeugen

105

Container ändern

ffmpeg
-i mandelbrot.avi
-c copy
mandelbrot.mov

106

Berechnen von MD5-Hashwerten

ffmpeg

- -i mandelbrot.mov
- -f framemd5

mandelbrot_mov_framesmd5.txt

Vergleichen von MD5-Hashwerten

Mac/Linux

diff

-s mandelbrot avi framesmd5.txt mandelbrot_mov_framesmd5.txt

Windows

fc

mandelbrot_avi_framesmd5.txt
mandelbrot_mov_framesmd5.txt

Parameter testen

- In Gruppen einen Command mit verschiedenen Parameter testen
 - Master (TIFF-Einzelbilder) > Mezzanine (ProRes/MKV)
 - Master (TIFF-Einzelbilder) > Zugang (H.264/MP4)
 - Master (uncompressed 10 bit) > Zugang (H.264/MP4)
- Wenn Zeit weitere Commands suchen und testen
 - Dateieigenschaften ändern
 - Qualitätskontrolle: Splitscreen zweiter Dateien/ Differenzdatei zweier Dateien

109

Master > Mezzanine

Erzeugen einer ProRes-Datei aus TIFF-Einzelbilder und sie ins HD-Format korrekt einbetten.

Parameter:

- -f es werden Einzelbilder verarbeitet
- -i die Ausgangsdatei
- -c:v der Video-Codec "Apple ProRes 422" wird ausgewählt -profile:v die Variante HQ (High Quality) von ProRes ist 3 -filter:v die Grösse anpassen und ins HD Reinstellen
- -an kein Ton ("audio no") der Name der zu erzeugenden Datei [ohne -o]

110

Master > Mezzanine

Erzeugen einer ProRes-Datei aus TIFF-Einzelbilder und sie ins HD-Format korrekt einbetten.

ffmpeg

-f image2
-framerate 24
-i DUFAY_TIFF/Dufay_%06d.tif
-filter:v "scale=1440:1080:flags=lanczos,
pad=1920:1080:240:0"
-c:v prores_ks -profile:v 3 -an
Dufay_ProRes.mkv

Master > Zugang

Erzeugen einer H.264-Videodatei aus TIFF-Einzelbilder und sie ins HD-Format korrekt einbetten.

ffmpeg

-f image2 -framerate 24 -i DUFAY_TIFF/Dufay_%06d.tif -filter:v "scale=1440:1080:flags=lanczos,pad=1920:1080:240:0" -pix_fmt yuv420p -c:v libx264 -preset veryslow -crf 30 Dufay 1 H264.mp4

Mezzanine > Zugang

Erzeugen einer H.264 Videodatei aus einer ProRes/MKV-Videodatei.

ffmpeq

-i Dufay ProRes.mkv -pix fmt yuv420p -c:v libx264 -preset veryslow -crf 30 Dufay 2 H264.mp4

113

Master Einzelbild > Master Video

Erzeugen einer FFV1-Datei aus TIFF-Einzelbilder. (<u>https://avpres.net/FFmpeg/sq_FFV1.html</u>)

ffmpeq

-f image2

-c:v ffv1 -level 3

-threads 8

-coder 1 -context 1 -a 1 -slices 24 -slicecrc 1

-an

-framerate 24

Dufay ffv1.mkv

-i DUFAY TIFF/Dufay %06d.tif

ffmpeg
-f image2
-framerate frames_per_second
-i input_file_regex.extension
-c:v ffv1
-level 3
-threads nb_threads
-coder 1
-context 1
-g 1
-slices 24
-slicecrc 1
-c:a copy
output file
-

114

Master Video > Zugang

Erzeugen einer H.264/MP4-Videodatei aus einer FFV1/MKV-Videodatei. https://avpres.net/FFmpeg/im H264.html https://amiaopensource.github.io/ffmprovisr/#transcode h264

ffmpeq -i input file -c:v libx264-preset preset value -crf constant rate factor -pix fmt yuv420p -c:a aac output file

ffmpeq

-i Dufay ffv1.mkv -c:v libx264 -preset veryslow -crf 18 -pix fmt yuv420p -c:a aac Dufay ffv1 h264.mp4

Master Video Digitalisat > Zugang

Erzeugen einer H.264/MP4 Videodatei aus einer uncompressed 10bit/MOV-Videodatei.

https://avpres.net/FFmpeg/im_H264.html

https://amiaopensource.github.io/ffmprovisr/#transcode h264

ffmpeq -i input file -c:v libx264 -preset preset value -crf constant rate factor -pix fmt yuv420p -c:a aac output file

ffmpeg -i input file.MOV -c:v libx264 -preset veryslow -crf 18 -pix fmt yuv420p -c:a aac output file.MP4

Ressourcen

Liste von möglichen Parameter anzeigen

FFmpeg Cookbook for Archivists

→ avpres.net/FFmpeg/

ffmprovisr → amiaopensource.github.io/ ffmprovisr/ ffmpeg -h
ffmpeg -codecs
ffmpeg -decoders
ffmpeg -h decoder=flac
ffmpeg -encoders
ffmpeg -h encoder=ffv1
ffmpeg -filters
ffmpeg -formats
ffmpeg -layouts
ffmpeg -sample_fmts
ffmpeg -pix_fmts
ffmpeg -bsfs

Weitere Möglichkeiten mit FFmpeg

- Quantisierungsauflösung verändern
- Scanmodus ändern (interlaced > progressive)
- Datei zuschneiden
- Etc.
- Qualitätskontrolle: Differenzdatei zweier Dateien
- Qualitätskontrolle: Splitscreen zweier Dateien

117

118

Beobachtungen

- Was haben Sie getestet?
- Was haben Sie dabei beobachtet, gelernt?
- Inwiefern verändern sich die Dateien (Metadaten und optisch)?

Danke für Ihre Aufmerksamkeit!	
• Feedback	
 Aufbau Kurs → Wann: 13. März 2025 → Inhalt: Anwendung von FFmpeg an konkreten Fallbeispiele & Möglichkeiten der Qualitätskontrolle → Welche Themen interessieren Sie für diesen Kurs? 	
120	

AV Preservation by reto.ch Ødegård & Bernard Restaurierung

Reto Kromer:

<u>reto.ch</u> / <u>info@reto.ch</u>

Eléonore Bernard und Kamilla Ødegård:

https://atelier40a.ch/odegard-bernard-restaurierung-klg/ eleonore.bernard@atelier40a.ch / kamilla.oedegard@atelier40a.ch