Sensor Design and Video Codec Design

Reto Kromer • AV Preservation by reto.ch

Open Isn't Enough (= No Time to Wait 5)

online edition, 8-10 December 2021

1

United States Patent [19] 3.971,065 [45] July 20, 1976 [54] COLOR IMAGING ARRAY ABSTRACT [75] Inventor: Bryce E. Bayer, Rochester, N.Y. A sensing array for color imaging includes individual luminance- and chrominance-sensitive elements that [73] Assignee: Eastman Kodak Company, are so intermixed that each type of element (i.e., ac-Rochester, N.Y. cording to sensitivity characteristics) occurs in a re-Mar. 5, 1975 [22] Filed: peated pattern with luminance elements dominating the array. Preferably, luminance elements occur at [21] Appl. No.: 555,477 every other element position to provide a relatively uniform in icular directions (e.g., horizontal and verchrominance patterns are interlaid there-[51] Int. Cl.². with and fill the remaining element positions to pro-[58] Field of Search 358/44, 45, 46, 47, vide relatively lower frequencies of sampling. 358/48: 350/317, 162 SF: 315/169 TV In a presently preferred implementation, a mosaic of selectively transmissive filters is superposed in References Cited registration with a solid state imaging array having a UNITED STATES PATENTS broad range of light sensitivity, the distribution of 358/44 filter types in the mosaic being in accordance with the 2,508,267 5/1950 Kasperowicz... 358/44 above-described patterns. 358/44 2,884,483 4/1959 Ehrenhaft et al. 3,725,572 4/1973 Kurokawa et al.. Primary Examiner—George H. Libman 11 Claims, 10 Drawing Figures Attorney, Agent, or Firm-George E. Grosser

Summary

- Bayer sensors
- lessons learned with MovIm
- suggestions for FFV1

2

Past Presentations Include

2015-04-02

The Colour Model Y'COCG

2018-06-22

• Y'CoCG for Fun and Profit

2019-02-27

Working Beyond RGB

Digital Video

- resolution
- bit depth
- linear, power, logarithmic encoding
- colour model
- chroma subsampling and compression
- illuminant

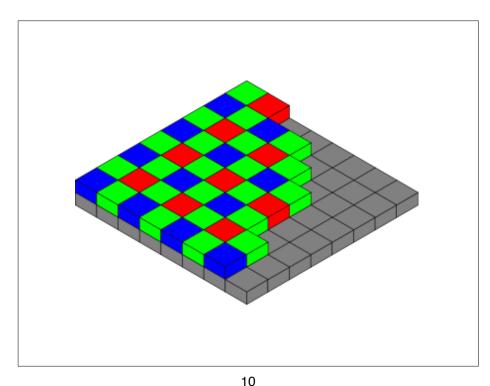
image quality

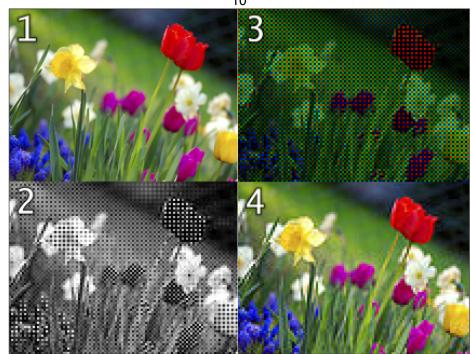
encoding time file size

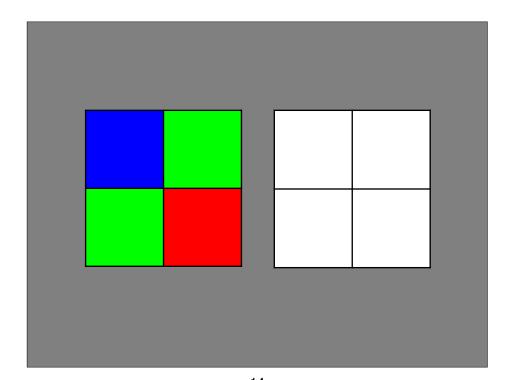
5

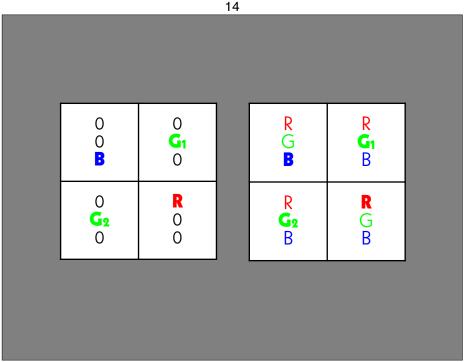
Uncomfortable Truths

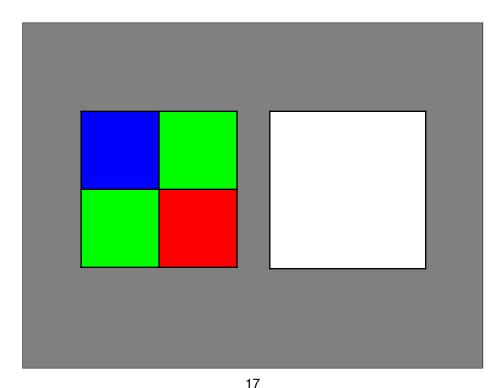
- sensors are colour blind
- Bayer sensors do not generate full RGB

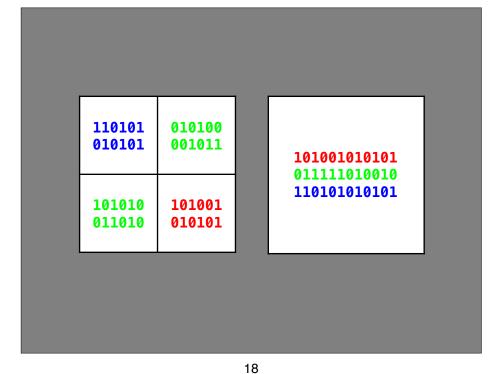

6


Bryce E. Bayer (1929–2012)

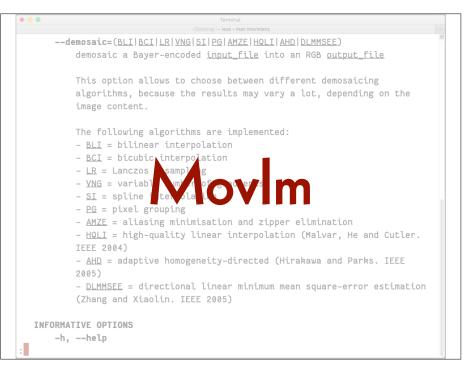

3,971,065 United States Patent [19] [45] July 20, 1976 **Bayer** [54] COLOR IMAGING ARRAY ABSTRACT [75] Inventor: Bryce E. Bayer, Rochester, N.Y. A sensing array for color imaging includes individual luminance- and chrominance-sensitive elements that [73] Assignee: Eastman Kodak Company, are so intermixed that each type of element (i.e., ac-Rochester, N.Y. cording to sensitivity characteristics) occurs in a re-[22] Filed: Mar. 5, 1975 peated pattern with luminance elements dominating the array. Preferably, luminance elements occur at [21] Appl. No.: 555,477 every other element position to provide a relatively high frequency sampling pattern which is uniform in two perpendicular directions (e.g., horizontal and ver-350/317; 358/44 tical). The chrominance patterns are interlaid there-. H04N 9/24 [51] Int. Cl.²... with and fill the remaining element positions to pro-vide relatively lower frequencies of sampling. 358/48; 350/317, 162 SF; 315/169 TV In a presently preferred implementation, a mosaic of selectively transmissive filters is superposed in **References Cited** [56] registration with a solid state imaging array having a UNITED STATES PATENTS broad range of light sensitivity, the distribution of filter types in the mosaic being in accordance with the 8/1948 Schroeder... 2,446,791 358/44 2,508,267 5/1950 Kasperowicz.. above-described patterns. 2,884,483 4/1959 Ehrenhaft et al.. 358/44 3,725,572 4/1973 Kurokawa et al. Primary Examiner-George H. Libman 11 Claims, 10 Drawing Figures Attorney, Agent, or Firm-George E. Grosser




11



B G₁
G₂ R
B


Two ways to use Bayer data

digital blow-up to RGB

- 3 times the amount of the generated data
- the file has the full sensor resolution
- only $\frac{1}{3}$ of the data are real

digital reduction to RGB

- 3/4 the amount of the generated data
- the file has $\frac{1}{2}$ of the sensor resolution
- all data are real

21

Internet Engineering Task Force (IETF)

RFC: Category: Published: August 2021

Authors: M. Niedermayer D. Rice J. Martinez

RFC 9043

FFV1 Video Coding Format Versions 0, 1, and 3

Abstract

This document defines FFV1, a lossless, intra-frame video encoding format. FFV1 is designed to efficiently compress video data in a variety of pixel formats. Compared to uncompressed video, FFV1 offers storage compression, frame fixity, and self-description, which makes FFV1 useful as a preservation or intermediate video format.

23

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational purposes.

MAIN TIMING – CONTINUO		Vertical F Timir Line Tir	ming r 3324	
©Eastman Kodak Company, 2010	www.ko	dak.com/go/imag	gers	Revision 5.0 MTD/PS-1027 p18

22

EBML: Directions

24

• support of Gray code (in addition to regular binary)

Frank Gray (1887–1969)

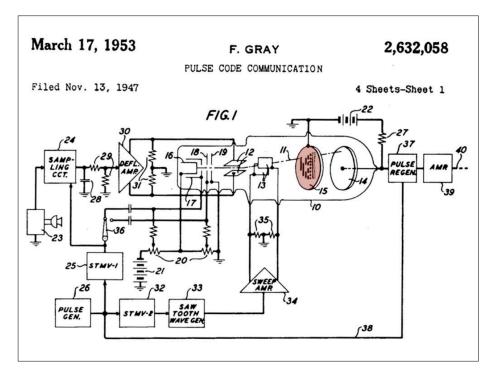
25

Stream: Internet Engineering Task Force (IETF)

RFC: 904

Category: Informational Published: August 2021 ISSN: 2070-1721

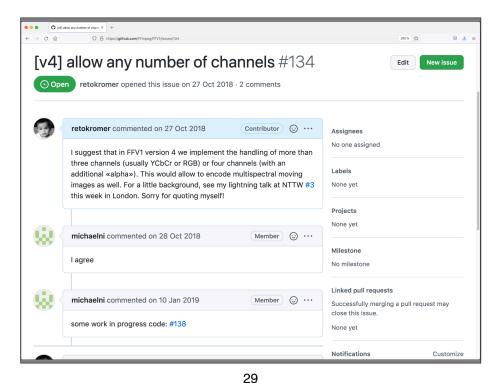
Authors: M. Niedermayer D. Rice J. Martinez


RFC 9043 FFV1 Video Coding Format Versions 0, 1, and 3

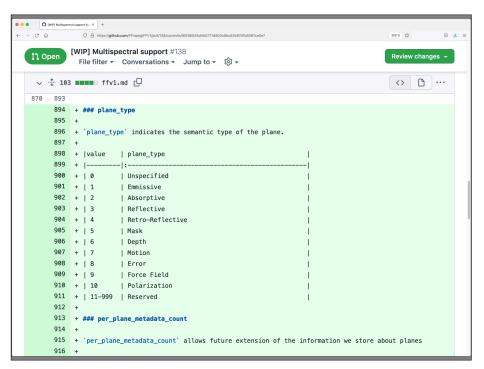
Abstract

This document defines FFV1, a lossless, intra-frame video encoding format. FFV1 is designed to efficiently compress video data in a variety of pixel formats. Compared to uncompressed video, FFV1 offers storage compression, frame fixity, and self-description, which makes FFV1 useful as a preservation or intermediate video format.

Status of This Memo


This document is not an Internet Standards Track specification; it is published for informational purposes.

26


FFV1: Directions (1)

- support of the Y'CoCG colour model
- support of any channel
- support of Bayer-type data

FFV1: Directions (2)

- support of 1D and 3D LUTs
- support of HDR
- revision of the bit stream
- tuning of the compression algorithm (speed and rate)

30

AV Preservation by reto.ch

zone industrielle Le Trési 3 1028 Préverenges Switzerland

> Web: reto.ch Twitter: @retoch Email: info@reto.ch

